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Abstract

An artificial parameter Linstedt–Poincaré method is presented and used to determine the periodic solution of a

nonlinear singular oscillator for small and large amplitudes. Comparisons with the results of harmonic balance, two-level

iterative, linearized harmonic balance and parameter perturbation methods are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In a recent short communication published in this journal, Mickens [1] considered the following nonlinear
ordinary differential equation:

€y ¼ �
1

y
; yð0Þ ¼ A; _yð0Þ ¼ 0, (1)

where the dots denote differentiation with respect to t, and determined the frequency of oscillation by means
of first- and second-order harmonic balance techniques applied to (cf. Eq. (1))

y €yþ 1 ¼ 0; yð0Þ ¼ A; _yð0Þ ¼ 0, (2)

which has the following invariant:

1
2
_y2 þ ln y ¼ lnA. (3)

The first- and second-order harmonic balance methods yield the following approximate solutions and
frequencies when applied to Eq. (2):

y1ðtÞ ¼ A cosðo1tÞ; o2
1 ¼

2

A2
(4)
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and

y2ðtÞ ¼
10

9
A cosðo2tÞ �

1

10
cosð3o2tÞ

� �
; o2

2 ¼
162

100

1

A2
, (5)

respectively. Since the exact frequency of oscillation is given by o2
ex ¼ p=2A2, the relative errors in the

frequency corresponding to the first- and second-order harmonic balance procedure are 12.8% and 1.6%,
respectively.

By means of a two-level iterative method for Eq. (2) which can be written as

€ykþ1 þ O2
kþ1ykþ1 ¼ O2

kþ1yk � ð €yÞ
2
kyk; yð0Þ ¼ A; _yð0Þ ¼ 0, (6)

Mickens [1] found that, upon using y0ðtÞ ¼ A cosðyÞ where y ¼ Ot, the first iteration yields

y1ðtÞ ¼
A

24
ð23 cosðO1tÞ þ cosð3O1tÞÞ; O2

1 ¼
4

3A2
(7)

and the frequency thus obtained differs from the exact one by 7.9%.
Mickens [1] also provided comparisons between the results summarized above and those obtained by means

of the application of the homotopy perturbation method [2–6] to (cf. Eq. (1))

€yþ o2y ¼ pðo2y� y�1Þ, (8)

0 €yþ 1y ¼ p €yy (9)

and

€yþ 0yþ pð €yÞ2y ¼ 0, (10)

which coincide with Eq. (2) for p ¼ 1, and where p is a homotopy parameter which is set equal to unity at the
end of the calculations.

If yðtÞ in Eq. (8) is expanded as

yðtÞ ¼ y0ðtÞ þ py1ðtÞ þOðp2Þ, (11)

the homotopy perturbation method yields the same frequency as that of Eq. (4), whereas, if yðtÞ is expanded as
in Eq. (11) and the coefficients 1 and 0 of Eq. (9) are expanded as [2–6]

1 ¼ o2 þ pa1 þOðp2Þ, (12)

0 ¼ 1þ pb1 þOðp2Þ, (13)

respectively, then the homotopy perturbation method predicts the same frequency as that of Eq. (7) and the
solution is given by

yðtÞ � y0ðtÞ þ y1ðtÞ ¼ A cosðO1tÞ þ
A3

32
ðcosðO1tÞ � cosð3O1tÞÞ (14)

and, therefore, is valid for small values of the amplitude, i.e., A51. Finally, if yðtÞ is expanded as in Eq. (11)
and the coefficient 0 in Eq. (10) is expanded as in Eq. (13), the homotopy perturbation method predicts the
same frequency as that of Eq. (7) and the following approximate solution (cf. Eq. (11)):

yðtÞ � y0ðtÞ þ y1ðtÞ ¼
A

24
ð23 cosðO1tÞ þ cosð3O1tÞÞ, (15)

after correcting a typographical error in Mickens’s equation (38).
It must be pointed out that the ‘‘expansion of constants’’ as in Eqs. (12) and (13) was proposed by He [2–6].
Eq. (1) does not contain a small parameter and, therefore, is not readily amenable to perturbation methods

based on the presence of small parameters [7]. However, it may be analyzed by methods that introduce an
artificial parameter such as modified Linstedt–Poincaré techniques [2,8–12], the homotopy perturbation
method [3–6,13] and linear delta expansions [14–16], by first introducing a linear stiffness term and an artificial
or book-keeping parameter and then expanding both the solution and the frequency of oscillation in terms of
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this artificial parameter which is set to unity at the end of the calculations. In some modified Linstedt–Poincaré
techniques, the frequency of oscillation is determined by a minimization procedure based on either the
absolute value of the difference between the frequency of the linear oscillator and that of the real one [8] or the
square of this difference [9]. In modified Linstedt–Poincaré techniques based on a linear delta series expansion,
the frequency of oscillation is determined by minimizing the sum of a finite number of terms in the series
expansion for the frequency of oscillation [14–16]. By way of contrast, other modified Linstedt–Poincaré
techniques [10–12,2] and the homotopy perturbation method [3–6,13] do not require any minimization
procedure for the determination of the frequency of oscillation.

In this paper, we first apply an artificial parameter Linstedt–Poincaré method for the determination of the
periodic solution and the frequency of oscillation of Eq. (1). This technique is based on the introduction of a
new dependent variable, a linear stiffness term and an artificial or book-keeping parameter, and the expansion
of both the solution and the frequency of oscillation in power series of the artificial parameter which is set to
unity at the end of the calculations. Therefore, the technique presented here is a modified Linstedt–Poincaré
method analogous to the ones described in the previous paragraph but which does not require any
minimization procedure; a similar technique has been applied by He [2,12] in his studies of the Duffing
equation. We then present a comparison between the results of this technique and those of Mickens’ iterative
procedure [1] and the linearized harmonic balance method presented by Beléndez et al. [17].
2. Formulation 1

Eq. (1) can be written as

€yþ o2y ¼ €yþ o2y� y� y2 €y; yð0Þ ¼ A; _yð0Þ ¼ 0, (16)

which has been obtained from Eq. (1) by multiplication by y2 and addition of inertia and a linear stiffness
term.

Upon introducing y ¼ ot, Eq. (16) can be written as

y00 þ y ¼ y�
1

o2
y� y2y00 þ y00; yð0Þ ¼ A; y0ð0Þ ¼ 0, (17)

where the prime denotes differentiation with respect to y. Furthermore, upon introducing a book-keeping
parameter p, Eq. (17) can be expressed as

y00 þ y ¼ p y�
1

o2
y� y2y00 þ y00

� �
; yð0Þ ¼ A; y0ð0Þ ¼ 0, (18)

which coincides with Eq. (17) upon setting p ¼ 1.
By looking for solutions of Eq. (18) as

yðyÞ ¼ y0ðyÞ þ py1ðyÞ þOðp2Þ, (19)

o2 ¼ o2
0 þ po2

1 þOðp2Þ, (20)

it is an easy exercise to show that, at Oðp0Þ,

y000 þ y0 ¼ 0; y0ð0Þ ¼ A; y00ð0Þ ¼ 0, (21)

whose solution is

y0ðyÞ ¼ A cosðyÞ. (22)

At Oðp1Þ, one obtains

y01 þ y1 ¼ y000 þ y0 �
y0

o2
0

� y2
0y000

¼ �
A

o2
0

þ
3A3

4

� �
cosðyÞ þ

A3

4
cosð3yÞ; y1ð0Þ ¼ 0; y01ð0Þ ¼ 0. (23)
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The absence of secular terms in y1 requires that

o2
0 ¼

4

3A2
(24)

and the solution of Eq. (23) is then

y1ðyÞ ¼ �
A3

32
ðcosð3yÞ � cosðyÞÞ. (25)

At Oðp2Þ, one obtains

y002 þ y2 ¼ y001 þ y1 �
1

o2
0

y1 �
o2

1

o2
0

y0

� �
� ðy2

0y001 þ 2y0y1y000Þ

¼ P1 cosðyÞ þ P3 cosð3yÞ þ P5 cosð5yÞ; y2ð0Þ ¼ 0; y02ð0Þ ¼ 0, (26)

where

P1 ¼ �
A3

32o2
0

þ A
o2

1

o4
0

�
1

64
A5, (27)

P3 ¼
A3

32
8þ

1

o2
0

� �
�

19

128
A5; P5 ¼ �

11A5

128
(28)

and the absence of secular terms in y2ðyÞ requires that P1 ¼ 0, i.e., o2
1 ¼

5
96

A2o2
0 ¼

5
72
. Therefore, a two-term

approximation of Eq. (20) with p ¼ 1 yields

o2 � o2
0 þ o2

1 ¼
4

3A2
1þ

5A2

96

� �
(29)

and the solution of Eq. (26) is

y2ðyÞ ¼ �
P3

8
ðcosð3yÞ � cosðyÞÞ �

P5

24
ðcosð5yÞ � cosðyÞÞ, (30)

where

P3 ¼
A3

4
�

1

8
A5; P5 ¼ �

11

128
A5 (31)

and, therefore, the substitution of Eqs. (22), (25) and (30) into Eq. (19) indicates that the two-term
approximation to the solution is only valid for small amplitudes of oscillation.

Eq. (24) yields the same frequency of oscillation as that of the first iteration of Mickens’ two-level iterative
method (cf. Eq. (7)) and Eq. (22) coincides with the first approximation of the harmonic balance method
(cf. Eq. (4).)
3. Formulation 2

In order to obtain solutions which are valid for large amplitudes of oscillation, Eq. (1) is first written as

€yþ o2y ¼ o2y� yð €yÞ2; yð0Þ ¼ A; _yð0Þ ¼ 0, (32)

which has been obtained from Eq. (2) by multiplying that equation by €y and adding a linear stiffness term.
Eq. (32) can be written upon introducing y ¼ ot and the artificial parameter p as

y00 þ y ¼ pðy� o2yðy00Þ2Þ; yð0Þ ¼ A; y0ð0Þ ¼ 0, (33)

whose solution can be obtained by employing Eqs. (19) and (20) as follows.
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At Oðp0Þ, one obtains Eqs. (21) and (22) while, at Oðp1Þ, it is easy to obtain

y001 þ y1 ¼ y0 � o2
0y0ðy

00
0Þ

2
Þ

¼ A� 3
o2

0A3

4

� �
cosðyÞ �

o2
0A3

4
cosð3yÞ,

y1ð0Þ ¼ 0; y01ð0Þ ¼ 0 (34)

and the absence of secular terms yields

y1ðyÞ ¼
A

24
ðcosð3yÞ � cosðyÞÞ; o2

0 ¼
4

3A2
(35)

and, therefore, a two-term approximation to the solution (cf. Eq. (19)) is

yðyÞ � y0ðyÞ þ y1ðyÞ ¼
A

24
ð23 cosðyÞ þ cosð3yÞÞ (36)

and Eqs. (35) and (36) coincide with Eq. (7), i.e., they coincide with the frequency of oscillation and the
solution provided by the first iteration of Mickens’ two-level iterative technique [1] and, therefore, o0 differs
from the exact frequency of oscillation by 7.9%.

At Oðp2Þ, one can easily obtain

y002 þ y2 ¼ y1 � o2
1y0ðy

00
0Þ

2
� o2

0y1ðy
00
0Þ

2
� 2o2

0y0y
00
0y001

¼ P1 cosðyÞ þ P3 cosð3yÞ þ P5 cosð5yÞ; y2ð0Þ ¼ 0; y02ð0Þ ¼ 0, (37)

where

P1 ¼ �
13
72

A� 3
4
A3o2

1; P3 ¼ �
4
9
A� 1

4
A3o2

1; P5 ¼ �
19
72

A (38)

and the absence of secular terms requires that P1 ¼ 0 and

y2ðyÞ ¼
83

1728
Aðcosð3yÞ � cosðyÞÞ �

19

1728
Aðcosð5yÞ � cosðyÞÞ; o2

1 ¼ �
13

54A2
. (39)

Therefore, a two-term approximation to the solution and the frequency of oscillation can be obtained from
Eqs. (19) and (20) after setting p ¼ 1 as

yðyÞ � y0ðyÞ þ y1ðyÞ þ y2ðyÞ ¼
A

1728
ð1626 cosðyÞ þ 83 cosð3yÞ þ 19 cosð5yÞÞ, (40)

o2 � o2
0 þ o2

1 ¼
59

54A2
, (41)

respectively.
The two-term approximation to the frequency of oscillation reported in Eq. (41) differs from the

exact frequency of oscillation by 16.6% and is smaller than the frequency corresponding to Eq. (35) which, in
turn, differs from the exact one by 7.9%. However, symbolic calculations performed with Mathe-
matica indicate that the frequencies corresponding to the 10- and 11-term approximation provided by
Eq. (20) are o10 � 1:24830744=A2 and o11 � 1:249554157=A2 which differ from the exact value by about
0.4% and 0.3%. Furthermore, Eq. (40) clearly indicates that, for the two-term approximation to the
solution, the contribution of the third- and fifth-order harmonics is smaller than that of the fundamental
frequency.

Remark 1. Eqs. (17) and (32) can be written as

LðyÞ ¼ F ðy; y00;o2Þ; yð0Þ ¼ A; y0ð0Þ ¼ 0, (42)

where

F ðyðyÞ; y00ðyÞ;o2Þ ¼ y�
1

o2
y� y2y00 þ y00 (43)
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and

F ðyðyÞ; y00ðyÞ;o2Þ ¼ y� o2yðy00Þ2, (44)

for Eqs. (17) and (32), respectively, and

LðyÞ ¼ y00 þ y, (45)

is a linear operator. Eq. (42) can be analyzed by means of Adomian’s decomposition technique [18].
Alternatively, Eq. (42) can be written, upon using the method of variation of parameters, as

yðyÞ ¼ A cosðyÞ þ
Z y

0

F ðyðsÞ; y00ðsÞ;o2Þ sinðy� sÞds, (46)

whose solution can be obtained by means of either iterative methods, e.g.,

ykþ1ðyÞ ¼ A cosðyÞ þ
Z y

0

F ðykðsÞ; y
00
kðsÞ;o

2Þ sinðy� sÞds (47)

or by means of homotopy by introducing an artificial parameter p as

yðyÞ ¼ A cosðyÞ þ p

Z y

0

F ðyðsÞ; y00ðsÞ;o2Þ sinðy� sÞds, (48)

so that Eq. (48) coincides with Eq. (47) upon setting p ¼ 1.

By expanding yðyÞ and o2 in Eq. (48) as in Eqs. (19) and (20), respectively, collecting terms in equal powers
of the parameter p and using the non-secularity condition at each order in the artificial parameter, it is easily
shown that the resulting approximations are identical to those presented in the two formulations above for
Eqs. (43) and (44).

Remark 2. By differentiating Eq. (47) twice with respect to y, adding Eq. (47) to the resulting equation and
replacing o by Okþ1 in Eq. (44), one obtains y00kþ1 þ ykþ1 ¼ yk � O2

kþ1ykðy
00
kÞ

2 which coincides with Eq. (6) of
Mickens’ two-level iterative method upon using y ¼ Okþ1t.

Remark 3. By introducing a linear stiffness term and y ¼ ot, Eq. (1) can be written as

y00 þ y ¼ y�
1

o2y
; yð0Þ ¼ A; y0ð0Þ ¼ 0. (49)

If one were to introduce an (multiplicative) artificial parameter p in the right-hand side of Eq. (49) and use
Eqs. (19) and (20), one would find that, at Oðp0Þ, the solution is the same as that of Eq. (22), while, at Oðp1Þ,
one would have

y001 þ y1 ¼ y0 �
1

o2
0y0

¼ A cosðyÞ �
1

o2
0A cosðyÞ

; y1ð0Þ ¼ 0; y01ð0Þ ¼ 0, (50)

where the second term in the right-hand side is proportional to f ðyÞ ¼ 1= cosðyÞ which is neither absolutely nor
square integrable in ½0; 2p�. In addition, f ðyÞ is unbounded at y ¼ p=2 and y ¼ 3p=2. Therefore, the Fourier
series expansion of f ðyÞ does not converge to f ðyÞ in the classical sense [19,20]. In fact, if one tried to expand it
as

1

cosðyÞ
¼
X1
n¼1

a2nþ1 cosðð2nþ 1ÞyÞ, (51)

one would find that a1 ¼ a5 ¼ a9 ¼ � � � ¼ 2 and a3 ¼ a7 ¼ a11 ¼ � � � ¼ �2 by either multiplying Eq. (51) by
cosðyÞ, using the properties of trigonometric functions and equating the coefficients of equal harmonics on the
left- and right-hand sides of the resulting equation, or by simply using the well-known expressions for the
determination of the Fourier series and writing cosðð2nþ 1ÞyÞ in terms of powers of cosðyÞ, but the resulting
series does not even converge; for example, it does not converge at y ¼ 0 where f ð0Þ ¼ 1.
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If one were to ignore the above comments, proceed naively with the use of the series of Eq. (51) in Eq. (50)
and eliminate secular terms, one would obtain the same value of o2

0 as that reported in Eq. (4) and, at Oðp2Þ,
one would obtain

y002 þ y2 ¼ y2 þ
o2

1

o4
0y0

þ
1

o2
0y2

0

y1; y2ð0Þ ¼ 0; y02ð0Þ ¼ 0, (52)

whose right-hand side contains f ðyÞ and gðyÞ ¼ f 2
ðyÞ, and gðyÞ is neither absolutely nor square integrable in

½0; 2p� and is unbounded and more singular than f ðyÞ at y ¼ p=2 and y ¼ 3p=2. Therefore, gðyÞ cannot be
expanded in Fourier series in the classical sense [19,20].

The above remarks may indicate why Mickens [1] considered Eqs. (2) and (6), other authors considered Eqs.
(8)–(10) and this author has considered Eqs. (18) and (32) which do not contain the singular term 1=y which
appears in Eq. (1). It should also be noted that Eqs. (1) and (3) clearly indicate that €y and _y are unbounded
where y ¼ 0.

Remark 4. As stated above, the Fourier series presented in Eq. (51) is divergent; however, it converges in a
weak sense to f ðyÞ [21,22]. This can be shown by using the identity

secðyÞ þ secðyÞ cosð2nyÞ ¼ 2ðcosðyÞ � cosð3yÞ þ � � � þ ð�1Þnþ1 cosðð2n� 1ÞyÞ, (53)

which can be obtained by multiplying the right-hand side of this expression by cosðyÞ and simplifying, using
the cosine product-to-sum identity and canceling terms.

Eq. (53) provides information on how well the series of Eq. (51) approximates f ðyÞ, for the error term is
secðyÞ cosð2nyÞ. If we integrate this term multiplied by a test function fðyÞ, i.e.,

R 2p
0 fðyÞ secðyÞ cosð2nyÞdy, and

apply the Riemann–Lebesgue lemma [21,22], it is an easy exercise to show that this integral converges to zero
as n!1 provided that fðyÞ secðyÞ is continuous and this requires that fðyÞ be zero at y ¼ p=2 and 3p=2. For
such fðyÞ, then Z 2p

0

fðyÞ secðyÞdy ¼ lim
n!1

Z 2p

0

fðyÞ
Xn

k¼1

2ð�1Þk cosðð2k � 1ÞyÞdy (54)

and, therefore, the series of Eq. (51) converges to f ðyÞ in this weak sense [22,23]. In addition, the divergent
series of Eq. (51) can be shown to be Abel summable [23].

4. Comparisons with other methods and conclusions

The results presented in the two formulations above clearly indicate that the range of applicability of the
artificial parameter Linstedt–Poincaré method for the singular equation considered here depends on how the
equation is written. This technique is not iterative and, at first order, it provides identical results to the first
iteration of Mickens’ two-level iterative method (cf. Eqs. (7), (24) and (35)) who considered Eq. (2) rather than
Eq. (1); at first-order, it also provides a more accurate frequency of oscillation than a first-order harmonic
balance technique applied to Eq. (2) (cf. Eqs. (4), (24) and (35)). However, a second-order harmonic balance
approximation (cf. Eq. (5)) predicts a more accurate frequency of oscillation than the two implementations of
the artificial parameter Linstedt–Poincaré method presented here, if only two terms in Eq. (20) are considered
and the harmonic balance procedure is applied to Eq. (2).

Mickens’ two-level iterative method provides approximations to both the solution and the frequency of
oscillation in an iterative/sequential manner as indicated in Eq. (6) and this iterative procedure can be shown
to converge because the right-hand side of Eq. (6) is a Lipschitz continuous function of its arguments [24–26].
On the other hand, the artificial parameter Linstedt–Poincaré method presented here provides both the
solution and the frequency of oscillation as power series of the artificial parameter (cf. Eqs. (19) and (20)) and
this parameter is set to unity at the end of the calculations. As indicated above, the series of Eq. (16) is only
valid for small amplitudes, whereas that of Eq. (32) has been shown to be valid for large amplitudes by means
of Mathematica. Moreover, as indicated in the paragraph following Eq. (32), the convergence of the series for
the frequency of oscillation is not a monotonic function of the number of terms of the series of Eq. (20).
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In a recent paper, Beléndez et al. [17] determined the frequency of oscillation of Eq. (1) by means of a
linearized harmonic balance procedure [27–29] applied directly to that equation. For the lowest harmonic
balance approximation, these authors determined a frequency of oscillation identical to that of Eq. (4). By
expressing the second approximation to the solution as the sum of the first approximation, i.e., A cosðo0tÞ,
where o2

0 ¼ 2=A2, which satisfies the initial conditions and an unknown function y1ðtÞ, substituting this
approximation into Eq. (1), linearizing the resulting expression, approximating y1ðtÞ by means of
trigonometric functions that satisfy homogeneous initial conditions, and applying the method of harmonic
balance to the resulting equation, they obtained the following approximation to the frequency of oscillation:

oWL2 ¼
1:2193273

A
, (55)

which differs from the exact one by 2.71%. However, by applying an exact second-order harmonic balance
procedure, Beléndez et al. [17] obtained

oSHB2 ¼
1:23733085

A
, (56)

which differs from the exact one by 1.275% and is, therefore, a better approximation to the frequency of
oscillation than those of Mickens’ second-order harmonic balance procedure (cf. Eq. (5)) applied to Eq. (2),
the first iteration of Mickens’ two-level iterative technique, i.e., Eq. (7), and the two-term approximations
provided by the artificial parameter Linstedt–Poincaré method presented in this paper, i.e., Eqs. (29) and (41).
A summary of the frequencies of oscillation of Eq. (1) and their errors obtained with different methods is
presented in Table 1; these tables also include the equation to which the methods have been applied.

A comparison between the artificial parameter Linstedt–Poincaré method presented here and the linearized
harmonic balance employed by Beléndez et al. [17] indicates that the former provides approximation to both
the solution and the frequency of oscillations as power series of the artificial parameter (cf. Eqs. (19) and (20))
which is set to unity at the end of the calculations, whereas the latter provides successive approximations to
both the solution and the frequency of oscillations. In both methods, the equations governing the second- and
higher-order approximations are linear (except for the exact second-order harmonic balance procedure,
Table 1

Frequencies of oscillation (oM ) and relative errors (EM ) in the frequency of oscillation of method M

oHB1 (Eq.) oHB2 (Eq.) oLHB1 (Eq.) oLHB2 (Eq.) oLHB2E (Eq.)

1:4142

A
(2)

1:2728

A
(2)

1:4142

A
(1)

1:2193

A
(1)

1:1547

A
(16)

oMLP1 (Eq.) oMLP2 (Eq.) oMLP1 (Eq.) oMLP2 (Eq.) oMLP10 (Eq.)
1:2373

A
(1) 1:1547

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

5A2

96

r
(16)

1:1547

A
(32)

1:0453

A
(32)

1:2483

A
(32)

oMLP11 (Eq.) oIT1 (Eq.) oHPM (Eq.) oHPM (Eq.) oHPM (Eq.)
1:2496

A
(32)

1:1547

A
(6)

1:4142

A
(8)

1:1547

A
(9)

1:1547

A
(10)

EHB1 (Eq.) EHB2 (Eq.) ELHB1 (Eq.) ELHB2 (Eq.) ELHB2E (Eq.)

12.8 (2) 1.6 (2) 12.8 (1) 2.7 (1) 1.3 (1)

EMLP1 (Eq.) EMLP1 (Eq.) EMLP2 (Eq.) EMLP10 (Eq.) EMLP11 (Eq.)

7.9 (16) 7.9 (32) 16.6 (32) 0.04 (32) 0.03 (32)

EIT1 (Eq.) EHPM (Eq.) EHPM (Eq.) EHPM (Eq.)

7.9 (32) 12.8 (8) 7.9 (9) 7.9 (10)

ðM ¼ HB1, HB2, LHB1, LHB2, LHB2E,MLP1,MLP2,MLP10,MLP11, HPM and IT1 correspond to the first- and second-order harmonic

balance procedures [1], the linearized first- and second-order harmonic balance methods [17], the linearized second-order harmonic

balance technique with exact second-order harmonic balance [17], the artificial parameter Linstedt–Poincaré method presented in this

paper with one, two, ten and eleven terms, the first-order homotopy perturbation method and the first iteration of Mickens’ two-level

iterative technique [1], respectively. The exact frequency of oscillation is oex ¼ 1:2533=A and the relative error of method M is determined

as E ¼ 100� jðoex � oM Þ=oexj. The error of MLP2 for Eq. (29) (cf. Eq. (16)) is EMLP2 ¼ 100� j1� 0:9213
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5A2=96

q
j, depends on the

amplitude of motion and is not reported in the table.
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i.e., Eq. (36), of Beléndez et al. [17]) and satisfy homogeneous initial conditions; the artificial parameter
Linstedt–Poincaré method makes use of non-secularity conditions at each order in the expansion in terms of
the artificial parameter, whereas the linearized harmonic balance technique employs harmonic balance.
Moreover, Eq. (50) is exactly the same equation as Eq. (25) of Beléndez et al. [17] when written in terms of t.
However, in the artificial parameter Linstedt–Poincaré method presented here, Eq. (50) would be integrated
exactly as it was done with Eqs. (23), (26), (34) and (37) above, whereas Beléndez et al. [17] used an
approximation (cf. their Eq. (28)) to solve their Eq. (25) and this approximation is the one that gave Eq. (53)
and, as these authors stated, it exhibits opposite results to those expected. For this reason, these authors
proposed an exact second-order harmonic balance procedure that makes use of their nonlinear Eq. (36) for the
correction uðtÞ which is then approximated by a two-term harmonic approximation that satisfies homogeneous
initial conditions. The third approximation in the linearized harmonic balance method is determined from a
perturbation to the second approximation and has an analogous expression to Eq. (50) but with y0 and y1

replaced by y1 and y2, respectively, in Eq. (50), whereas the third-order approximation of the method
presented here is governed by Eq. (52).

Perhaps the largest difference between these two techniques comes from the fact that the artificial parameter
Linstedt–Poincaré method is applied to Eqs. (16) and (32) rather than to Eq. (1), whereas the linearized
harmonic balance procedure is applied directly to Eq. (1) and provides an approximation to the solution that
it is independent of the amplitude. In addition, the frequency of oscillation is determined by the series of
Eq. (20) in the method presented here, whereas it is improved in a sequential manner in the linearized
harmonic balance procedure. On the other hand, the artificial parameter Linstedt–Poincaré method when
applied to Eq. (16) provides a solution that it is only valid for small amplitudes, whereas, when applied to
Eq. (32), it provides a solution that is valid for small and large amplitudes as has been verified with
Mathematica. Furthermore, the linearized harmonic balance method when applied directly to Eq. (1) provides
an approximation to the frequency of oscillation at second order which is more accurate than that provided by
a two-term approximation of the artificial parameter Linstedt–Poincaré method when applied to Eq. (32).
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[17] A. Beléndez, D.I. Méndez, T. Beléndez, A. Hernández, M.L. Álvarez, Harmonic balance approaches to the nonlinear oscillators in

which the restoring force is inversely proportional to the dependent variable, Journal of Sound and Vibration, (2008), in press.

[18] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994.

[19] A. Zygmund, Trigonometric Series, third ed., Vol. I and II combined, Cambridge University Press, Cambridge, UK, 2002.

[20] T.W. Körner, Fourier Analysis, Cambridge University Press, Cambridge, UK, 2002.

[21] L. Kantorovich, G. Akilov, Functional Analysis, second ed., Pergamon Press, New York, 1982.

[22] R.P. Kanwal, Generalized Functions: Theory and Technique, second ed., Birkhäuser, Boston, 1998.
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